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This paper is concerned with two important elements in the high-order accurate
spatial discretization of finite-volume equations over arbitrary grids. One element
is the integration of basis functions over arbitrary domains, which is used in ex-
pressing various spatial integrals in terms of discrete unknowns. The other consists
of quadrature approximations to those integrals. Only polynomial basis functions
applied to polyhedral and polygonal grids are treated here. Nontriangular polygo-
nal faces are subdivided into a union of planar triangular facets, and the resulting
triangulated polyhedron is subdivided into a union of tetrahedra. The straight line
segment, triangle, and tetrahedron are thus the fundamental shapes that are the build-
ing blocks for all integrations and quadrature approximations. Integrals of products
up to the fifth order are derived in a unified manner for the three fundamental shapes
in terms of the position vectors of vertices. Results are given both in terms of tensor
products and products of Cartesian coordinates. The exact polynomial integrals are
used to obtain symmetric quadrature approximations of any degree of precision up to
five for arbitrary integrals over the three fundamental domains. Using a coordinate-
free formulation, simple and rational procedures are developed to derive virtually
all quadrature formulas, including some previously unpublished. Four symmetry
groups of quadrature points are introduced to derive Gauss formulas, while their
limiting forms are used to derive Lobatto formulas. Representative Gauss and
Lobatto formulas are tabulated. The relative efficiency of their application to poly-
hedral and polygonal grids is detailed. The extension to higher degrees of precision
is discussed. c© 1998 Academic Press
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I. INTRODUCTION

Two of the current themes in computational physics are high-order accurate methods and
the employment of arbitrary grids. We are interested in using these ideas in the discretization
of integral conservation laws. As applied to a finite domain, these state that the rate of change
of a conserved quantity inside a domain is equal to integrated effects over its boundary and,
possibly, its net creation inside the domain. For three-dimensional problems, the domain
is a volume element, and the boundary is a closed surface. For two-dimensional problems,
the dimensions of the geometric elements are reduced by one.

A general procedure for obtaining a high-order accurate discretization of equations on a
given arbitrary grid would involve the following steps:

1. A set of basis functions is chosen to represent the solution in some local region.
This region is usually the finite conservation domain. When calculating transport terms,
a region surrounding a boundary surface separating two adjoining domains is sometimes
used. The basis functions are normally chosen as polynomials, but other readily integrable
or differentiable functions can also be used.

2. A set of discrete unknowns in the neighborhood of the representation region is chosen
to reconstruct the local representation of the solution. These can be symmetrically located
or directionally biased.

3. The coefficients in the representation are evaluated in terms of the conservative un-
knowns. This requires the integration of the basis functions over the conservation domain.
In the most general case, a least-squares algebraic problem with constaints must be solved.

4. The boundary terms, and possible source terms, are evaluated for the conservation
domain. If the boundary functions are linear and the boundary is analytically defined,
the evaluation could be performed in closed form, provided that the basis functions are
integrable. In general, a high-order quadrature in terms of point values is required. The
solution at a boundary point could involve spatial derivatives (requiring the differentiation
of the basis functions) if transport terms are present. It will also generally involve nonlinear
functions of the states on the two sides of the boundary.

The present paper is restricted to a discussion of two important elements in such a proce-
dure. They are the integration of the basis functions over arbitrary domains and quadrature
approximations to general integrals over such domains.

An arbitrary grid is defined by specifying a set of points and the lines connecting those
points. For three dimensions, the precise surfaces that form cell boundaries must also be
specified. These lines and surfaces should be defined so as to make the integration of basis
functions and quadrature approximations easily performed. (An exception could be for lines
and surfaces at specified global domain boundaries, where more complex evaluations for
certain analytical shapes may be tolerated.) One therefore normally connects the points by
straight lines, although piecewise straight lines may be necessary when employing dual
grids. In two dimensions, this produces plane polygonal domains in general. For three
dimensions, the finite domains are arbitrary polyhedra, with polygonal faces of different
types. For other than triangles, the faces are in general nonplanar. If the surface of a quadri-
lateral face is defined as a ruled surface, the integrations of certain basis functions can be
performed analytically, but the resulting expressions are extremely complex. Also, quadra-
ture approximations would be very difficult to obtain. It is therefore best to subdivide each
nontriangular face into a union of planar triangular facets. Efficient volume integrations can
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be obtained by subdividing the resulting triangulated polyhedron into a union of tetrahedra.
The face triangulations define the shapes of the boundary surfaces, and therefore affect the
answers for the surface and volume integrations. However, once the shapes of the boundary
surfaces are defined, the subdivision into tetrahedra is just a matter of convenience in per-
forming the volume integrations and would not affect the final answers. The most efficient
subdivision of a polygonal face, in terms of minimizing the number of triangular facets, can
always be accomplished without introducing any additional interior points. But an efficient
subdivision of a triangulated polyhedron into tetrahedra may require the introduction of
interior vertices or interior edges. The straight line segment, triangle, and tetrahedron are
thus the fundamental shapes that are the building blocks for all integrations and quadrature
approximations.

The simplest basis functions are polynomials, and this paper will be restricted to their
integration over the fundamental domains. Other basis functions can be more appropriate for
certain classes of problems and will be considered in a future publication. A coordinate-free
formulation using vector and tensor notation is employed, thus simplifying the derivations
and permitting a unified presentation for the three fundamental shapes. In this formulation,
any function is expressed as a generalized Taylor series in terms of tensor products of
the position vector, whose origin can be arbitrarily defined. The integration of a general
polynomial thus involves the integration of tensor products of various orders over the
fundamental domains. It is possible to express the answers for all three fundamental shapes
by a unified formula for a tensor product of a given order. Such expressions are given
for products up to the fifth order, and higher-order formulas can be easily derived by
the same procedure. When the order of the tensor product is greater than the number of
vertices defining the fundamental shape, the expression is no longer unique. Some terms
in the unified formulas can then be written in terms of others. We thus obtain simplified
formulas for the line segment starting with the third order, the triangle for the fourth order,
and the tetrahedron for the fifth order. For practical applications, expressions for generic
monomials in terms of Cartesian coordinates are also given. From these one can easily
obtain the expression for any specific monomial.

Quadrature approximations to integrals over ann-dimensional simplex, including trian-
gles and tetrahedra, which are symmetric with respect to the vertices, have received much
attention in recent years. A compilation of formulas is found in the book by Stround [1],
with references to the original papers given therein. Some additional formulas are found
in Grundmann and M¨oller [2]. Formulas for triangles were also given by Cowper [3] and
Lyness and Jespersen [4], and for tetrahedra by Yu [5] and Keast [6]. Some of the derivations
of these formulas involved algebraic methods, based on roots of orthogonal polynomials,
and were often of an ad hoc nature. Using our coordinate-free formulations, we develop
very simple and rational procedures to derive all of the above formulas, and also some
useful ones that are new to our knowledge. The exact polynomial integrals are used to
obtain quadrature approximations of various degrees of precision for arbitrary integrals
over the fundamental domains. For isolated fundamental shapes, the most efficient formu-
las, minimizing the number of quadrature points, are those in which the locations of the
quadrature points are unspecified. By analogy with the one-dimensional cases, the formulas
are referred as Gauss, even for triangles and tetrahedra. For the latter two shapes, due to
the nonlinearity of the equations, there may be more than one Gauss formula for a given
degree of precision, and some could possess properties not shared by the one-dimensional
formulas. Quadrature points could be located outside or on the boundaries, and some of
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the coefficients or weights could be negative, which may be unsuitable in some applica-
tions. Under some conditions, it may be desirable to employ formulas that involve one or
more free parameters. While they are less efficient for isolated fundamental shapes, the
parameters can be chosen so that all the weights are positive, if this is necessary. A more
important role for the free parameter(s) is to place some or all of the quadrature points on
shape boundaries (vertices, edges, or faces). Such formulas are referred to as Lobatto, again
by analogy with the one-dimensional case. When the original finite domains are part of
a grid consisting of arbitrary polyhedra or polygons, these boundary elements are shared
by several fundamental shapes. Depending on the type of the polyhedra or polygons, the
degree of precision, the amount of storage available, and the parallelization of a code, a
Lobatto formula may be more efficient than a Gauss formula. We therefore present both
Gauss and Lobatto formulas of various degrees of precision. Note that besides the evalua-
tions of boundary terms and possible source terms, quadrature approximations are useful
when calculating integrals over the conservation domain for those basis functions that are
not readily integrable. The type of term being evaluated will also play a role in choosing
between a Gauss or Lobatto formula.

II. EXACT INTEGRALS OF POLYNOMIALS FOR THE FUNDAMENTAL SHAPES

Let r denote the position vector of a point in space with respect to an arbitrary origin.
Using tensor notation, an arbitrary functionf (r) can be expanded about the origin in terms
of tensor products as a generalized Taylor series

f (r) = f (0) + r · (∇ f )0 + 1
2rr : (∇∇ f )0 + 1

6rrr
... (∇∇∇ f )0 + · · · . (1)

In our procedure for obtaining a high-order accurate discretization of equations, steps (3)
and (4) require the integration off (r) over the conservation domain and its boundaries, in
which the evaluations of the integrals of the tensor products ofr of various orders over the
fundamental domains are required. Letn be the number of vertices defining the fundamental
shape. The line segment (n = 2) is defined by the pointsr1 andr2, and has the length

L = |r2 − r1|. (2a)

Similarly, the triangle (n = 3) is defined by the pointsr1, r2, andr3, and has the area

S = 1
2|(r2 − r1) × (r3 − r2)|, (2b)

and the tetrahedron (n = 4) is defined by the pointsr1, r2, r3, andr4, and has the volume

V = 1
6|(r2 − r1) × (r3 − r1) · (r4 − r1)|. (2c)

In order to derive the formulas for the integrals of the tensor products, instead of employing
the conventional simplex coordinates, it is simpler for our purposes to use the independent
parametric representations for the three fundamental shapes shown in Figs. 1a, 1b, and 1c.
Here the parametersu, v, andw range from 0 to 1. A point on the line segment is given by

r = r1(1 − u) + r2u, (3a)
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FIG. 1. Parameteric representations for three fundamental shapes.

whereu is the fractional distance fromr1 to r2. The differential elementdL is

dL =
∣∣∣∣ ∂r
∂u

∣∣∣∣ du= L du. (3b)

A point on the triangular face is given by

r = r1(1− u) + r2u(1− v) + r3 uv, (4a)

wherev is the fractional distance fromr2 to r3, andu is the fractional distance fromr1 to
thev-endpoint. The differential element is

dS=
∣∣∣∣ ∂r
∂u

× ∂r
∂v

∣∣∣∣ du dv = 2Su du dv. (4b)

Similarly, a point in the tetrahedron is given by

r = r1(1− u) + r2u(1− v) + r3 uv(1− w) + r4 uvw, (5a)

wherew is the fractional distance fromr3 to r4, v is the fractional distance fromr2 to
thew-endpoint, andu is the fractional distance fromr1 to thev-endpoint. The differential
element is

dV =
∣∣∣∣ ∂r
∂u

× ∂r
∂v

· ∂r
∂w

∣∣∣∣ du dv dw = 6V u2v du dv dw. (5b)

Using the above changes of variables, the spatial integrals can be transformed to integrals
in the parameter space. The derivations can be simplified considerably by making use of
certain symmetries. For example, in evaluating

∫
rrr dV, since the final result must be

symmetric in the four vertices, the coefficients ofr1r1r1 andr2r2r2 must be the same, etc.
Similarly, since products of powers ofu, v, andw commute, it follows that the coefficients
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of r1r1r2 andr1r2r1 must be the same, etc. As a result, the integrations only involve a few
independent integrals in the parameter space. The formulas for the exact integrals of tensor
products over the three fundamental domains can be expressed in a unified manner in terms
of tensor products of the position vectors of the vertices. The final results up to the fifth
order are

∫
1

dL
dS
dV

=
 L

S
V

 =
 |r2 − r1|

1
2|(r2 − r1) × (r3 − r1)|

1
6|(r2 − r1) × (r3 − r1) · (r4 − r1)|

 (6a)

∫
r

dL
dS
dV

= 1

n

∑
i

r i

 L
S
V

 (6b)

∫
rr

dL
dS
dV

= 1

n(n + 1)

[∑
i

∑
j

r i r j +
∑

i

r i r i

] L
S
V

 (6c)

∫
rrr

dL
dS
dV

= 1

n(n + 1)(n + 2)

[∑
i

∑
j

∑
k

r i r j r k +
∑

i

∑
j

(r i r i r j + · · ·)

+ 2
∑

i

r i r i r i

] L
S
V

 (6d)

∫
rrrr

dL
dS
dV

= 1

n(n + 1)(n + 2)(n + 3)

[∑
i

∑
j

∑
k

∑
l

r i r j r kr l

+
∑

i

∑
j

∑
k

(r i r i r j r k + · · ·) +
∑

i

∑
j

(r i r i r j r j + · · ·)

+ 2
∑

i

∑
j

(r i r i r i r j + · · ·) + 6
∑

i

r i r i r i r i

] L
S
V

 (6e)

∫
rrrrr

dL
dS
dV

= 1

n(n + 1)(n + 2)(n + 3)(n + 4)

[∑
i

∑
j

∑
k

∑
l

∑
m

r i r j r kr l rm

+
∑

i

∑
j

∑
k

∑
l

(r i r i r j r kr l + · · ·) +
∑

i

∑
j

∑
k

(r i r i r j r j r k + · · ·)

+ 2
∑

i

∑
j

∑
k

(r i r i r i r j r k + · · ·) + 2
∑

i

∑
j

(r i r i r i r j r j + · · ·)

+ 6
∑

i

∑
j

(r i r i r i r i r j + · · ·) + 24
∑

i

r i r i r i r i r i

] L
S
V

 . (6f)

Here the range for each summation is from 1 ton. In Eqs. (6d) to (6f), we have only indicated
one term in some of the summations, the others being obtained from the independent
permutations of the indices. For example, there are three terms in the second summation in
Eq. (6d), namely,r i r i r j , r i r j r i , andr j r i r i . Similarly, there are six, three, and four terms in
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the second to fourth summations in Eq. (6e), and 10, 15, 10, 10, and 5 terms in the second to
sixth summations in Eq. (6f), respectively. The above formulas can be simplified when the
order of the tensor products is greater thann. It can then be shown that the contribution of
all the summations involving an even number of indices is equal to that of the summations
involving an odd number of indices. Thus for the line segment (n = 2), Eq. (6d) can be
replaced by∫

rrr dL = 2

n(n + 1)(n + 2)

[∑
i

∑
j

∑
k

r i r j r k + 2
∑

i

r i r i r i

]
L . (7a)

For the line segment (n = 2) and the triangle (n = 3), Eq. (6e) can be replaced by∫
rrrr

dL

dS
= 2

n(n + 1)(n + 2)(n + 3)

[∑
i

∑
j

∑
k

(r i r i r j r k + · · ·) + 6
∑

i

r i r i r i r i

](
L

S

)
.

(7b)
Finally, for all three shapes, Eq. (6f) can be replaced by

∫
rrrrr

dL
dS
dV

= 2

n(n + 1)(n + 2)(n + 3)(n + 4)

[∑
i

∑
j

∑
k

∑
l

∑
m

r i r j r kr l rm

+
∑

i

∑
j

∑
k

(r i r i r j r j r k + · · ·) + 2
∑

i

∑
j

∑
k

(r i r i r i r j r k + · · ·)

+ 24
∑

i

r i r i r i r i r i

] L
S
V

 . (7c)

In practical calculations, the position vector is usually expressed in terms of Cartesian
coordinates. Let

< > ≡
∑

i

( )i (8)

denote the sum over the vertices of the fundamental shape. For example,< xy > =
x1y1 + x2y2 for a line segment. From Eqs. (6) and (7), we can easily derive the following
relations for the integrals of generic monomials in Cartesian coordinates:

∫
x

dL
dS
dV

= 1

n
< x >

 L
S
V

 (9a)

∫
xy

dL
dS
dV

= 1

n(n + 1)
[< x >< y > + < xy >]

 L
S
V

 (9b)

∫
xyz

dL
dS
dV

= 1

n(n + 1)(n + 2)
[< x >< y >< z > + < x >< yz >

+ < y >< xz > + < z >< xy > + 2 < xyz>]

 L
S
V

 (9c)
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∫
x2yz

dL
dS
dV

= 1

n(n + 1)(n + 2)(n + 3)
[(< x >2 + < x2 >)(< y >< z > + < yz >)

+ 2 < y > (< x >< xz > + < x2z >)

+ 2 < z > (< x >< xy > + < x2y >) + 2 < xy >< xz >

+ 4 < x >< xyz> + 6 < x2yz >]

 L
S
V

 . (9d)

When the order of the monomial is greater thann, the relations can be simplified, and one
obtains

∫
xyz dL = 2

n(n + 1)(n + 2)
[< x >< y >< z > + 2 < xyz>]L (10a)∫

x2yz
dL

dS
= 2

n(n + 1)(n + 2)(n + 3)
[< x >2< yz > + < x2 >< y >< z >

+ 2 < x > (< y >< xz > + < z >< xy >)

+ 6 < x2yz >]

(
L

S

)
(10b)

∫
x3yz

dL
dS
dV

= 2

n(n + 1)(n + 2)(n + 3)(n + 4)
[< x >3< y >< z >

+ 6 < x > (< xy >< xz > + < x >< xyz> + < y >< x2z >

+ < z >< x2y >) + 3(< x >< x2 >< yz >

+ < y >< x2 >< xz >+ < z >< x2 >< xy >)

+ 12 < x3 >< y >< z > + 24 < x3yz >]

 L
S
V

 (10c)

∫
x2y2z

dL
dS
dV

= 2

n(n + 1)(n + 2)(n + 3)(n + 4)
[< x >2< y >2< z >

+ < x2 >< y2 >< z > + 2(< x >< y2 >< xz >

+ < y >< x2 >< yz >+ < z >< xy >2 + < x >2< y2z >

+ < y >2< x2z >) + 4(< x >< xy >< yz >

+ < y >< xy >< xz >+ < x >< z >< xy2 >

+ < y >< z >< x2y >) + 8 < x >< y >< xyz>

+ 24 < x2y2z >]

 L
S
V

 . (10d)
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Expressions for integrals of other monomials in Cartesian coordinates may be obtained by
appropriate substitution into the above formulas and simplifying where possible.

III. HIGH-ORDER QUADRATURE APPROXIMATIONS

FOR THE FUNDAMENTAL SHAPES

Quadrature approximation for integrals of an arbitrary functionf over the fundamental
domains are of the form

∫
f (r)

dL
dS
dV

=
[∑

q

wq f (rq)

] L
S
V

, (11a)

whererq is a quadrature point and the coefficientwq is the corresponding weight. The
approximation has a degree of precisiond if it is exact for all polynomials of degree equal
to or less thand. Here we consider only approximations which are symmetric with respect
to the vertices. The quadrature points then fall into symmetry groups, each of which is
associated with a single weight. (Our use of the term “symmetry group” should not be
confused with its definition in group theory.) The quadrature approximation then takes the
form

∫
f (r)

dL
dS
dV

=
[∑

g

wg

∑
q

f
(
r g

q

)] L
S
V

 , (11b)

wherer g
q is a quadrature point belonging to symmetry groupg. The symmetry is most

clearly evident when viewed from the centroid of each fundamental shape. We therefore find
it useful to introduce a parameterization based on the centroid, rather than the conventional
simplex coordinates, to classify the quadrature points.

Let r̄ denote the position vector with respect to the centroid of the fundamental shape.
Therefore,

r̄ = r − r c, (12)

where

r c ≡ 1

n

∑
i

r i (13)

defines the centroid. It is easy to show that∑
i

r̄ i = 0. (14)

From the above equation, it follows that in evaluating the integrals of tensor products ofr̄ ,
all summations in which any index appears once also vanish. For the line segment, since
r̄1 = −r̄2, we then obtain∫

r̄ dL =
∫

r̄ r̄ r̄ dL =
∫

r̄ r̄ r̄ r̄ r̄ dL = 0. (15a)
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The remaining Eqs. (6) and (7) in terms of centroid-based position vectors reduce to∫
r̄

dS

dV
= 0 (15b)

∫
r̄ r̄

dL
dS
dV

= 1

n(n + 1)

∑
i

r̄ i r̄ i

 L
S
V

 (15c)

∫
r̄ r̄ r̄

dS

dV
= 2

n(n + 1)(n + 2)

∑
i

r̄ i r̄ i r̄ i

(
S

V

)
(15d)

∫
r̄ r̄ r̄ r̄

dL

dS
= 12

n(n + 1)(n + 2)(n + 3)

∑
i

r̄ i r̄ i r̄ i r̄ i

(
L

S

)
(15e)

∫
r̄ r̄ r̄ r̄ dV = 1

n(n + 1)(n + 2)(n + 3)

[∑
i

∑
j

(r̄ i r̄ i r̄ j r̄ j + · · ·) + 6
∑

i

r̄ i r̄ i r̄ i r̄ i

]
V

(15f)∫
r̄ r̄ r̄ r̄ r̄

dS

dV
= 48

n(n + 1)(n + 2)(n + 3)(n + 4)

∑
i

r̄ i r̄ i r̄ i r̄ i r̄ i

(
S

V

)
. (15g)

Note that, in general, the integrals of the tensor products ofr̄ up to the fifth order are just
proportional to the sum over all vertices of the tensor products ofr̄ i . The only exception is
for the integral of the fourth-order tensor product over the tetrahedron, where the addition
of terms

∑
i

∑
j (r̄ i r̄ i r̄ j r̄ j + · · ·) ( total of three terms) are necessary.

A. Symmetry Groups

The first symmetry group consists of the centroidr c. Its location is shown in Fig. 2a for
the triangle and Fig. 2b for the tetrahedron. The second symmetry group consists of then
one-parameter vertex-based quadrature points

r̄α
i ≡ αr̄ i

(
− 1

n − 1
≤ α ≤ 1, α 6= 0

)
. (16)

α = 1 corresponds to the vertex, whileα = −1/(n − 1) is the opposite vertex, midpoint
of the opposite edge, and centroid of the opposite face for the line segment, triangle,

FIG. 2. Location of centroid.
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FIG. 3. Location of one-parameter vertex based points.

and tetrahedron, respectively.α = 0 corresponds to the centroid, and therefore it must be
excluded from this group. Note that for the line segment (n = 2), the parameterα and−α

describe the same group. For the triangle, the three points are located on the three lines
shown in Fig. 3a. For the sake of clarity, we only show one of the four corresponding points
and lines for the tetrahedron in Fig. 3b. If we sum the contribution from all members of the
vertex-based group, we obtain, from Eq. (1), the relation

∑
i

f
(
r̄α

i

) = n f (r c) + α2

2

[∑
i

r̄ i r̄ i

]
: (∇∇ f )c + α3

6

[∑
i

r̄ i r̄ i r̄ i

]
... (∇∇∇ f )c + · · · . (17)

The third symmetry group consists of then(n − 1) two-parameter edge-based quadrature
points

r̄ γ δ
i j ≡ γ r̄ i + δr̄ j ( j 6= i, γ 6= δ 6= 0) (18)

for edgei j . To exclude points which are already in the first two groups,γ andδ must not
equal zero, andj must not equali . Here we also assume thatγ andδ are not equal. (When
the two parameters are the same we defined a fourth group, to be discussed below.) For the
line segment, the third group is not necessary, since the first two groups cover the complete
domain. It is easy to show that the values ofγ andδ in theγ − δ plane are restricted to the
triangle determined by the points (0, 1), (1, 0), and(−1/(n − 2), −1/(n − 2)) in order for
the quadrature points to lie in the domain. Whenγ + δ = 1 the quadrature points lie on the
edgei j . Note that for the triangle (n = 3) the group (γ, δ) is also equivalent to the groups
(−δ, γ − δ) and (δ − γ, −γ ). For the triangle, the six points, which are located within its
boundary, are shown in Fig. 4a. For the tetrahedron, we show one of the six pairs of points
determined by a single edge in Fig. 4b. They are located in the plane defined by that edge
and the midpoint of the opposite edge. If we substitute Eq. (18) into Eq. (1) (expanded
about the centroid) and sum over all the edges, we obtain a series involving sums of tensor
products of̄r γ δ

i j . These can be expressed in terms of sums of tensor products ofr̄ i as

∑
i

∑
j 6=i

r̄ γ δ
i j = 0 (19a)
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FIG. 4. Location of two-parameter edge based points.

∑
i

∑
j 6=i

r̄ γ δ
i j r̄ γ δ

i j = [n(γ 2 + δ2) − (γ + δ)2]
∑

i

r̄ i r̄ i (19b)

∑
i

∑
j 6=i

r̄ γ δ
i j r̄ γ δ

i j r̄ γ δ
i j = [n(γ 3 + δ3) − (γ + δ)3]

∑
i

r̄ i r̄ i r̄ i (19c)

∑
i

∑
j 6=i

r̄ γ δ
i j r̄ γ δ

i j r̄ γ δ
i j r̄ γ δ

i j =



[n(γ 4 + δ4) − (γ + δ)4 + 12γ 2δ2]
∑

i

r̄ i r̄ i r̄ i r̄ i (n = 3),

[n(γ 4 + δ4) − (γ + δ)4]
∑

i

r̄ i r̄ i r̄ i r̄ i

+ 2γ 2δ2
∑

i

∑
j

(r̄ i r̄ i r̄ j r̄ j + · · ·) (n = 4),

(19d)∑
i

∑
j 6=i

r̄ γ δ
i j r̄ γ δ

i j r̄ γ δ
i j r̄ γ δ

i j r̄ γ δ
i j = [n(γ 5 + δ5) − (γ + δ)5 + 12(γ 3δ2 + γ 2δ3)]

∑
i

r̄ i r̄ i r̄ i r̄ i r̄ i .

(19e)

In deriving the above equations, we made use of the same simplifications that were employed
to obtain Eqs. (7). The fourth symmetry group is a degenerate case of the third symmetry
group whenγ = δ ≡ β, and consists of then(n−1)/2 one-parameter edge-based quadrature
points

r̄β
i j ≡ β(r̄ i + r̄ j )

(
j > i, − 1

n − 2
≤ β ≤ 1

2
, β 6= 0

)
. (20)

β = 1
2 corresponds to the midpoint of the edgei j . This group is not necessary for the triangle

(n = 3), since the vertex-based group already includes this case. We therefore show results
for the tetrahedron (n = 4) only. For this case the parameterβ and−β describe the same
group. One of the six points, located on the line connecting the midpoint of the given edge
with the midpoint of the opposite edge, is shown in Fig. 5. The relevant tensor product
summations over the edges can then be expressed as∑

i

∑
j >i

r̄β
i j = 0 (21a)

∑
i

∑
j >i

r̄β
i j r̄

β
i j = 2β2

∑
i

r̄ i r̄ i (21b)
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FIG. 5. Location of one-parameter edge based points.

∑
i

∑
j >i

r̄β
i j r̄

β
i j r̄

β
i j = 0 (21c)

∑
i

∑
j >i

r̄β
i j r̄

β
i j r̄

β
i j r̄

β
i j = β4

[∑
i

∑
j

(r̄ i r̄ i r̄ j r̄ j + · · ·) − 4
∑

i

r̄ i r̄ i r̄ i r̄ i

]
(21d)

∑
i

∑
j >i

r̄β
i j r̄

β
i j r̄

β
i j r̄

β
i j r̄

β
i j = 0. (21e)

The conventional simplex coordinateµi are defined by

r =
∑

i

µi r i , (22a)

where ∑
i

µi = 1. (22b)

It is easy to establish the relations between our centroidal parameterization and the conven-
tional simplex coordinates for the four symmetry groups as follows: For

r c: µi = 1

n
(for all i ) (23)

r̄α
i : µi = 1 + (n − 1)α

n
(24a)

µ j = 1 − α

n
( j 6= i ) (24b)

r̄ γ δ
i j : µi = 1 + (n − 1)γ − δ

n
(25a)

µ j = 1 − γ + (n − 1)δ

n
(25b)

µk = 1 − γ − δ

n
(k 6= i, k 6= j ) (25c)
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r̄β
i j : µi = µ j = 1 + (n − 2)β

n
(26a)

µk = 1 − 2β

n
(k 6= i, k 6= j ). (26b)

The results contained in Eqs. (15), (17), (19), and (21) can be summarized in Table 1.
It shows coefficients multiplying the various tensor product summations for each of the
symmetry groups, as well as the integral off (r̄) over the fundamental domains. Note
that for n = 2 or 3, the column

∑
i

∑
j (r̄ i r̄ i r̄ j r̄ j + · · ·) is not applicable, but six times

the coefficients in that column must be added to the coefficients in column
∑

i r̄ i r̄ i r̄ i r̄ i . All
symmetric quadrature formulas of any degree of precision up to five can be derived from this
table. The number of independent terms (columns) required for a given degree of precision
depends on the fundamental shape. For the line element, the degree of precisiond of the
quadrature approximation equals one plus two times the number of independent terms. For
the other two shapes, an approximation of degree of precisiond hasd independent terms,
except for the tetrahedron, where we haved + 1 terms ifd ≥ 4.

In a Gauss quadrature formula, the parameters defining a symmetry group are unspecified.
Then the number of unknowns associated with a group is one (the weight) plus the number
of parameters defining the group. The number of quadrature points belonging to a symmetry
group is a function of the fundamental shape. The efficiency of a particular symmetry group
in forming a Gauss quadrature approximation is measured by the number of quadrature
points per unknown. These are tabulated for the four symmetry groups and three fundamental
shapes in Table 2. For the line element, the two symmetry groups are equally efficient, but
for the other two shapes the efficiency is a function of the symmetry group, with the centroid
being the most efficient and the two-parameter edged-based group being the least efficient.
The latter group is not required to derive the most efficient Gauss quadrature formulas
when the degree of precision is no greater than five. But that group is important in obtaining
efficient Lobatto formulas, as will be shown below. Using Tables 1 and 2 we can derive
Gauss quadrature formulas for the three fundamental shapes by equating the total number
of unknowns to the number of independent terms. There may be more than one combination
of symmetry groups satisfying this condition. The combination giving the most efficient
formula will be referred to as the Gauss quadrature formula. Since the parameters occur
nonlinearly ford ≥ 2, there may be more than one solution for a particular combination of
symmetry groups. This will be found to be true for one case even after discarding solutions
that locate quadrature points outside the domains. For the triangle and tetrahedron, the
formulas may contain negative weight coefficients.

While the Gauss quadrature formulas are the most efficient for isolated fundamental
shapes, they may not be appropriate if positive weight coefficients are desired or if the
shapes are part of a grid in which their boundaries (vertices, edges, or faces) are shared by
several neighbors. In these cases it may be more efficient to employ limiting forms of the
symmetry groups in which the points lie on the boundary elements. Quadrature formulas
using these special symmetry groups will be referred to as Lobatto. These new symmetry
groups consist of the vertices̄r v

i , edge midpoints̄re
i j , face centroids̄r f

i , and one-parameter
edge points̄r ε

i j . They are defined as

r̄ v
i ≡ r̄α

i with α = 1; (27)

r̄e
i j ≡ r̄α

k with α = − 1
2, vertexk opposite edgei j , for triangle; (28a)

≡ r̄β
i j with β = 1

2, for tetrahedron; (28b)
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TABLE 2

Number of Unknowns and Gauss Quadrature Points for Symmetry Groups

Line element Triangle Tetrahedron

Symmetry Number of Number of Points per Number of Points per Number of Points per
group unknowns points unknown points unknown points unknown

r c 1 1 1 1 1 1 1

r̄ α
i 2 2 1 3 1.5 4 2

r̄ γ δ

i j 3 6 2 12 4

r̄ β

i j 2 6 3

r̄ f
i ≡ r̄α

i with α = − 1
3, vertexi opposite facef, for tetrahedron; (29)

r̄ ε
i j ≡ r̄ γ δ

i j with γ = ε, δ = 1 − ε. (30)

In order to determine the relative efficiency of these new symmetry groups, we need the
relations among the fundamental elements (vertices, edges, faces, and cells) which make
up an arbitrary polygon or polyhedron. For a polygonal face (or plane polygon in two
dimensions), which can always be triangulated without introducing interior vertices, we
define

v ≡ number of vertices, (31a)

e ≡ total number of edges, (31b)

eb ≡ number of boundary edges, (31c)

f ≡ total number of triangular facets or faces. (31d)

These satisfy the relations

v = eb, (32a)

e = 2eb − 3, (32b)

f = eb − 2. (32c)

For polyhedra, we restrict ourselves to triangulated polyhedra that can be subdivided into
tetrahedra without introducing interior vertices. This is true for convex polyhedra. The
subdivision may require introducing interior edges. For this case, in addition to the elements
defined in Eqs. (31), we also define

ei ≡ number of interior edges, (33a)

fb ≡ number of boundary triangular faces, (33b)

c ≡ number of tetrahedra. (33c)

The elements defined by Eqs. (31) and (33) satisfy the following relations for a triangulated
polyhedron:

v = fb

2
+ 2, (34a)

e = c + fb + 1, (34b)
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eb = 3

2
fb, (34c)

ei = e− eb, (34d)

f = 2c + fb

2
. (34e)

The efficiency of the new symmetry groups in a Lobatto quadrature approximation is
also a function of the type of integral being approximated. There are three such integrals in
a conservation law. If the basis functions are not readily integrable, a quadrature over the
conservation domain is required in step 3 of the general discretization procedure. Since the
same basis functions are utilized for all the cells in the grids, we consider integration of
arbitrary functions over all the tetrahedra (or triangles) contained in the tetrahedralized (or
triangulated) grid. Neglecting the effects of grid boundaries and assuming a homogeneous
grid, we obtain for domain integrals in two dimensions the relations

v = 1
2 f, (35a)

e = 3
2 f. (35b)

In three dimensions, one obtains analogously the relations

v = 1
6c, (36a)

e = 7
6c, (36b)

f = 2c. (36c)

The second type of integral is a source integral. This involves integrating an arbitrary
nonlinear function over a polyhedral (or polygonal) cell. The relations among the geometric
elements are given by Eqs. (32) and (34). The third type of integral is a boundary integral.
For each function evaluation at a boundary point, several additional projections onto the
boundary normals or tangents may be required. We assume that the computational cost
of these projections can be neglected, compared to the computational cost of the function
evaluation. For two-dimensional problems the boundaries are line segments, and the Gauss
formula is to be preferred. For three-dimensional problems, the required relations for the
boundary of a triangulated polyhedra are given by Eqs. (34b) and (34c). The data for each
boundary symmetry group obtained from Eqs. (32), (34), (35), and (36) is tabulated for the
three types of Lobatto integrals in Table 3. For completeness, we have also repeated the
information for the groupr c andr̄α

i . All Lobatto formulas can be obtained using Tables 1 and
3, where entries in Table 1 are replaced by their limiting values as indicated in Eqs. (27) to
(30). For a given degree of precision, there are now many more combinations of symmetry
groups to evaluate as possible candidates. Again, we may find several or no solutions and
will discard those with quadrature points outside the domains.

The last column in Table 3 deserves further comments. For a given polyhedron, increasing
the number of interior edges increases the total number of tetrahedral cells, faces, and edges,
but the total number of vertices remains the same. Therefore, the net result is to increase the
total number of quadrature points for every symmetry group except the groupr̄ v

i . Whenever
possible, one should triangulate polygonal faces and subdivide the triangulated polyhedron
in such a way as to minimize the number of interior edges, which also minimizes the number
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TABLE 3

Number of Unknowns and Lobatto Quadrature Points for Symmetry Groups

Symmetry Number of

No. of points
No. of points per triangle per tetrahedron

group unknowns Domain Source Boundary Domain Source

r c 1 1 1 1 1 1

r̄ α
i 2 3 3 3 4 4

r̄ v
i 1 1

2
1 + 2

eb − 2
1
2

+ 2
fb

1
6

1 + 3− ei
c

r̄ e
i j 1 3

2
2 + 1

eb − 2
3
2

7
6

3 + 3− 2ei
c

r̄ ε
i j 2 3 4+ 2

eb − 2
3 7

3
6 + 6− 4ei

c

r̄ f
i 1 2 3+ 1− ei

c

of tetrahedral cells. We illustrate this point with some simple examples. A tetragonal pyramid
with a planar base, which has five vertices, can only be subdivided into two tetrahedra with
no interior edge. But a trigonal bipyramid, which also has five vertices, can be subdivided
into two tetrahedra with no interior edge (Fig. 6a), or three tetrahedra with one interior edge
(Fig. 6b). The former subdivision is to be preferred, since it results in fewer total number
of quadrature points. There are two important shapes with six vertices. An octahedron can
only be subdivided into four tetrahedra with one interior edge. The subdivision of a trigonal
prism depends on the triangulation of the quadrilateral faces, which can be nonplanar.
A subdivision into three tetrahedra with no interior edge is shown in Fig.7a. Of the two
possible triangulations of a nonplanar quadrilateral face, one produces an exterior edge,
while the other one defines an interior edge. Thus a prism with a nonplanar face can be
subdivided into four tetrahedra with one interior edge, as shown in Fig. 7b. It is easy to prove
that an arbitrary trigonal prismatic grid can always be triangulated so as to result in three
tetrahedra per prism with no interior edge. Another example is a structured grid consisting
of hexahedra with quadrilateral faces. As shown by Rizzi [7], there exists a triangulation
of the faces which permits subdivision into five tetrahedra with no interior edge (Fig. 8a).
One of the five is twice the size of the other four. Kordulla and Vinokur [8] recommended a

FIG. 6. Two possible subdivisions of a trigonal bipyramid.
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FIG. 7. Two possible subdivisions of a trigonal prism.

subdivision into six tetrahedra, by introducing a main diagonal as a common interior edge
(Fig. 8b). Although the latter produces a more uniform subdivision, the former is preferred.
In summary, polyhedra consisting of less than four tetrahedra will not require an interior
edge, while those with four or more may require one.

B. Quadrature Formulas

With the aid of Tables 1–3, we can derive virtually all symmetric quadrature formulas
of any degree of precision up to five. By choosing different combinations of symmetry
groups one might end up with more unknowns than the number of equations required to be
solved. The resulting system of equations thus becomes underdetermined, and the solutions
can then be expressed in terms of free parameters. We can show that many published for-
mulas are just solutions with particular choices of the free parameters. We have tabulated
some Gauss and Lobatto formulas that are useful for approximating the different types of
integrals for arbitrary polyhedral and polygonal grids. Only those formulas for which the
quadrature points lie within the domains are given. The formulas for the line element are
classical, and therefore are not presented. The coefficients for triangles and tetrahedra are
given in Tables 4 and 5, respectively. Although they can all be expressed in closed form, due
to space limitations, one of the relations is given in the text below. The letterg refers to Gauss

FIG. 8. Two possible subdivisions of a hexahedron.
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formulas, while the other letters indicate Lobatto formulas. Those formulas not found in
references cited in this paper are starred. Note that negative weights are present in formulas
(3g) and (4c) for triangles, and (3g), (4g), (4b), (4c), and (5a) for tetrahedra.

We now give brief derivations of some the formulas, concentrating on those combinations
of symmetry groups resulting in the solution of quadratic or cubic algebraic equations. As
can be seen from Tables 2 and 3, the edge-based symmetry groupsr̄ γ δ

i j and r̄β
i j , and their

limiting forms are less efficient than the centroidr c and vertex-based symmetry groupr̄α
i ,

and its limiting form. None of the edge-based groups or their limiting forms are required
until we reachd ≥ 4. We note from Table 1 that if the centroidr c is present, the weight
wc appears only in the first column. The system is thus simplified, having been reduced
by one equation and one unknown. A unique solution is then readily obtained for all the
cases we tabulated except ford = 5, where two formulas require the solution of a quadratic
equation.

It follows from Table 1 that ford ≤ 3 the triangle and tetrahedron may be treated in a
unified manner. From Table 2 we see that ann-point Gauss formula ford = 2 is given by
the symmetry group̄rα

i . From the first two columns of Table 1 we obtain immediately

d = 2: wα = 1

n
; α = ± 1√

n + 1
. (37)

For the tetrahedron (n = 4) the negative root must be discarded, sinceα is outside the
permitted range (see Eq. (16)). For the triangle (n = 3) both roots are valid, but the negative
root (α = − 1

2) places the points on the mid-edge of the triangle. This is an example of a
Gauss formula with points located on the boundary. It will therefore be more efficient when
the triangle is part of a triangular or polygonal grids and is to be preferred to the positive
root. From Table 3 we see that it is also superior to the Lobatto formula based onr c and
r̄ v

i for the source and boundary integrals, but equally as efficient for the domain integral.
Using Tables 1 and 2, we readily derive the solution for then + 1 point Gauss formula for
d = 3, based onr c andr̄α

i , as

d = 3: wc = − n2

n(n + 1)
, wα = (n + 2)2

4n(n + 1)
, α = 2

n + 2
. (38)

Note that the centroid has a negative weight for both shapes. The Lobatto formula based on
r̄ v

i andr̄α
i involves the solution of a quadratic equation. The final expressions are

d = 3: wv = 1 ∓ √
4n + 9

2n(n + 1)(n + 2)
,

wα = 2n2 + 6n + 3 ± √
4n + 9

2n(n + 1)(n + 2)
, α = 1 ± √

4n + 9

2(n + 2)
.

(39)

The two roots forα are within the permitted range for both shapes, but only the lower sign
gives all positive weights. For the tetrahedron, there is an additional reason for choosing
the lower sign, since we haveα = − 1

3, so that the formula is actually based onr̄ v
i andr̄ f

i ,
and all the points lie on the boundary. On the other hand, one can show from Table 3 that
for the triangle the Lobatto formula based onr c, r̄ v

i , andr̄e
i j is more efficient than Eq. (39)

for the domain and boundary integrals.
Whend ≥ 4, it follows from column 5 in Table 1 that the formula for a tetrahedron requires

the symmetry groups̄rβ
i j or r̄ γ δ

i j , or their limiting forms. The use of the two-parameter
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edge-based group is in general less efficient than using the combination of one-parameter
edge-based and vertex-based groups. When employingr̄β

i j , one can derive from Table 1 the
relation

wββ4 = 1
840. (40)

One immediately obtainswe = 2
105 for Lobatto formulas involving the edge midpoint sym-

metry groupr̄e
i j . For these cases, the solutions for tetrahedra have the same structure as

those for the corresponding triangles.
All the quadrature formulas except two ford ≥ 4 that we have tabulated include two

vertex-based symmetry groups̄rα1
i , and r̄α2

i , or their limiting forms. Here we present a
general method for obtaining solutions, although many Lobatto formulas can be determined
by simpler procedures. The equations to be solved are some or all of the set

wα1 + wα2 = a0 (41a)

wα1α
2
1 + wα2α

2
2 = a2 (41b)

wα1α
3
1 + wα2α

3
2 = a3 (41c)

wα1α
4
1 + wα2α

4
2 = a4 (41d)

wα1α
5
1 + wα2α

5
2 = a5. (41e)

The parametersai could include unknowns from other symmetry groups. From Eqs. (41b)
and (41c) we obtain forwα1 andwα2 the expressions

wα1 = a2α2 − a3

α2
1(α2 − α1)

, wα2 = a2α1 − a3

α2
2(α1 − α2)

. (42)

Substituting the above equations into Eqs. (41a), (41d), and (41e) we obtain

a3(α1 + α2) − a2[(α1 + α2)
2 − α1α2)] = a0(α1α2)

2 (43a)

a3(α1 + α2) − a2α1α2 = a4 (43b)

a3[(α1 + α2)
2 − α1α2] − a2α1α2(α1 + α2) = a5. (43c)

Ford = 4, we can eliminate (α1 + α2) by substituting Eq. (43b) into Eq. (43a), and obtain
for α1α2 the quadratic equation(

a3
2 − a0a2

3

)
(α1α2)

2 + 2a2
(
a2a4 − a2

3

)
α1α2 + a4

(
a2a4 − a2

3

) = 0. (44)

If there are no additional unknowns from other symmetry groups and for the values ofa0

to a4 in our tabulated cases, Eq. (44) has two real solutions. For each of them, Eq. (43a)
then yields a quadratic equation whose solutions areα1 andα2. In our cases the constants
are such that one of the solutions of Eq. (44) results in locating oneα outside the permitted
range. Ford = 5, it follows from Eqs. (43b) and (43c) thatα1 andα2 are two solutions of
the quadratic equation(

a2a4 − a2
3

)
α2 + (a3a4 − a2a5)α + (

a3a5 − a2
4

) = 0. (45)
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As an example, we present the Gaussian solution for the tetrahedron for the degree of
precision five. The most efficient quadrature points for this case involve two vertex-based
r̄α

i and one edge-based̄rβ
i j symmetry groups. (The Gauss formula given in Ref. [5] is less

efficient than the present one.) We must now include Eq. (40) in our equation set (41). In
terms of

λ ≡ 1

β2
, (46)

the parametersai become

a0 = 1

4
− λ2

560
, a2 = 1

20
− λ

420
,

a3 = 1

60
, a4 = 1

84
, a5 = 1

140
.

(47)

Substituting (α1 + α2) andα1α2 from Eq. (45) into Eq. (43a), one obtains a cubic equation
for λ

9λ3 − 284λ2 + 2800λ − 8512= 0. (48)

The above equation has three real roots. The values ofα1 andα2 from one root are complex,
while those from another root place one set of points outside the tetrahedron. The remaining
root is given

λ = 4

27

[
4
√

79 cos

(
cos−1 67

√
79

24964 + 2π

3

)
+ 71

]
. (49)

This value must be used in evaluating formula (5g) in Table 5. Note that this formula was
derived in Ref. [2] by an entirely different procedure, but only numerical values of the
parameters were given. We have provided explicit exact relations for the parameters.

For a given degree of precisiond, the optimum quadrature formulas to use (in terms of the
minimum number of quadrature points) depend on the type of integral being approximated,
and whether negative weights are allowed. For each value ofd, using Tables 1–3, we
have examined all possible candidate combinations of symmetry groups to determine the
optimum one. The results are summarized in Table 6. In thew column, “pos” means that
positive weights are necessary, while “neg” means that negative weights are allowed. For
triangles, the formulas for the domain integrals were previously given in Ref. [4]. One final
note concerns the domain integral for a tetrahedron. For a nonuniform grid obtained by
subdividing the hexahedron of a structured grid into five tetrahedra, the entries in Table 3
for the groups̄r v

i , r̄e
i j , andr̄ ε

i j would be1
5, 6

5, and 12
5 , respectively. This does not affect the

choice of optimum formulas in Table 6.

IV. CONCLUDING REMARKS

We have presented formulas for exact integrals of polynomials and quadrature approxi-
mations up to degree five for the line segment, triangle, and tetrahedron. These three shapes
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TABLE 6

Optimum Quadrature Formulas for Various Types of Integrals

Triangle Tetrahedron

d w Domain Source Boundary w Domain Source

1 Pos. or neg. 1a 1g 1g (c = 1) Pos. or neg. 1a 1g
1a (c > 1)

2 Pos. or neg. 2g or 2a 2g 2g Pos. or neg. 2a 2g (c = 1)

2a (c > 1)

3 Pos. 3b 3a 3b Pos. 3a 3a
Neg. 3b 3g 3b Neg. 3a 3g (c ≤ 4)a

3a (c ≥ 4)a

4 Pos. 4b 4g 4a (c = 1) Pos. 4d 4a
4b (c > 1)

Neg. 4c 4g 4c Neg. 4c 4g (c < 4)

4b (c ≥ 4)

Pos. 5b 5g (c < 4)

5b (c ≥ 4)

5 Pos. or neg. 5a 5g 5a Neg. 5b 5g (c = 1)

5a (c > 1)

a Whenc = 4,
{

3g, if ei = 0,

3a, otherwise.

are the building blocks for integrations over arbitrary polyhedral or polygonal grids. A table
of coefficients for quadrature symmetry groups and integrals for all three shapes is given,
enabling one to construct symmetric quadrature formulas in a rational manner. The new
procedure for obtaining the solutions in higher dimensions is no more complex than the one
we are familiar with for one dimension. We have tabulated many useful Gauss and Lobatto
formulas for both the triangle and tetrahedron, including a number that have not appeared in
references available to us. All the formulas derived in this paper provide necessary tools in
the spatial discretization of finite-volume equations over arbitrary polyhedral or polygonal
grids to an accuracy of up to the fifth order. Higher-order formulas can be readily obtained
using our procedure. Some of the quadrature formulas will now require the introduction
of the two-parameter edge-based symmetry group defined by Eq. (18). As a result, the
coefficients will not always be expressible in closed form, but may require the numerical
solution of non-linear algebraic equations.
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