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This paper is concerned with two important elements in the high-order accurate
spatial discretization of finite-volume equations over arbitrary grids. One element
is the integration of basis functions over arbitrary domains, which is used in ex-
pressing various spatial integrals in terms of discrete unknowns. The other consists
of quadrature approximations to those integrals. Only polynomial basis functions
applied to polyhedral and polygonal grids are treated here. Nontriangular polygo-
nal faces are subdivided into a union of planar triangular facets, and the resulting
triangulated polyhedron is subdivided into a union of tetrahedra. The straight line
segment, triangle, and tetrahedron are thus the fundamental shapes that are the build-
ing blocks for all integrations and quadrature approximations. Integrals of products
up to the fifth order are derived in a unified manner for the three fundamental shapes
in terms of the position vectors of vertices. Results are given both in terms of tensor
products and products of Cartesian coordinates. The exact polynomial integrals are
used to obtain symmetric quadrature approximations of any degree of precision up to
five for arbitrary integrals over the three fundamental domains. Using a coordinate-
free formulation, simple and rational procedures are developed to derive virtually
all quadrature formulas, including some previously unpublished. Four symmetry
groups of quadrature points are introduced to derive Gauss formulas, while their
limiting forms are used to derive Lobatto formulas. Representative Gauss and
Lobatto formulas are tabulated. The relative efficiency of their application to poly-
hedral and polygonal grids is detailed. The extension to higher degrees of precision
is discussed. (© 1998 Academic Press
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I. INTRODUCTION

Two of the current themes in computational physics are high-order accurate methods
the employment of arbitrary grids. We are interested in using these ideas in the discretizat
of integral conservation laws. As applied to a finite domain, these state that the rate of chat
of a conserved quantity inside a domain is equal to integrated effects over its boundary a
possibly, its net creation inside the domain. For three-dimensional problems, the dom:
is a volume element, and the boundary is a closed surface. For two-dimensional problel
the dimensions of the geometric elements are reduced by one.

A general procedure for obtaining a high-order accurate discretization of equations ol
given arbitrary grid would involve the following steps:

1. A set of basis functions is chosen to represent the solution in some local regic
This region is usually the finite conservation domain. When calculating transport term
a region surrounding a boundary surface separating two adjoining domains is sometin
used. The basis functions are normally chosen as polynomials, but other readily integra
or differentiable functions can also be used.

2. Asetof discrete unknowns in the neighborhood of the representation region is chos
to reconstruct the local representation of the solution. These can be symmetrically loca
or directionally biased.

3. The coefficients in the representation are evaluated in terms of the conservative t
knowns. This requires the integration of the basis functions over the conservation doma
In the most general case, a least-squares algebraic problem with constaints must be sol

4. The boundary terms, and possible source terms, are evaluated for the conserva
domain. If the boundary functions are linear and the boundary is analytically define
the evaluation could be performed in closed form, provided that the basis functions &
integrable. In general, a high-order quadrature in terms of point values is required. T
solution at a boundary point could involve spatial derivatives (requiring the differentiatio
of the basis functions) if transport terms are present. It will also generally involve nonline:
functions of the states on the two sides of the boundary.

The present paper is restricted to a discussion of two important elements in such a pro
dure. They are the integration of the basis functions over arbitrary domains and quadrat
approximations to general integrals over such domains.

An arbitrary grid is defined by specifying a set of points and the lines connecting thos
points. For three dimensions, the precise surfaces that form cell boundaries must alsc
specified. These lines and surfaces should be defined so as to make the integration of k
functions and quadrature approximations easily performed. (An exception could be for lin
and surfaces at specified global domain boundaries, where more complex evaluations
certain analytical shapes may be tolerated.) One therefore normally connects the points
straight lines, although piecewise straight lines may be necessary when employing d
grids. In two dimensions, this produces plane polygonal domains in general. For thr
dimensions, the finite domains are arbitrary polyhedra, with polygonal faces of differe
types. For other than triangles, the faces are in general nonplanar. If the surface of a qua
lateral face is defined as a ruled surface, the integrations of certain basis functions car
performed analytically, but the resulting expressions are extremely complex. Also, quad
ture approximations would be very difficult to obtain. It is therefore best to subdivide eac
nontriangular face into a union of planar triangular facets. Efficient volume integrations ce
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be obtained by subdividing the resulting triangulated polyhedron into a union of tetrahe
The face triangulations define the shapes of the boundary surfaces, and therefore affe
answers for the surface and volume integrations. However, once the shapes of the bou
surfaces are defined, the subdivision into tetrahedra is just a matter of convenience ir
forming the volume integrations and would not affect the final answers. The most effic
subdivision of a polygonal face, in terms of minimizing the number of triangular facets, «
always be accomplished without introducing any additional interior points. But an effici
subdivision of a triangulated polyhedron into tetrahedra may require the introductior
interior vertices or interior edges. The straight line segment, triangle, and tetrahedror
thus the fundamental shapes that are the building blocks for all integrations and quadr
approximations.

The simplest basis functions are polynomials, and this paper will be restricted to t
integration over the fundamental domains. Other basis functions can be more appropria
certain classes of problems and will be considered in a future publication. A coordinate-
formulation using vector and tensor notation is employed, thus simplifying the derivati
and permitting a unified presentation for the three fundamental shapes. In this formula
any function is expressed as a generalized Taylor series in terms of tensor produc
the position vector, whose origin can be arbitrarily defined. The integration of a gen
polynomial thus involves the integration of tensor products of various orders over
fundamental domains. It is possible to express the answers for all three fundamental sl
by a unified formula for a tensor product of a given order. Such expressions are g
for products up to the fifth order, and higher-order formulas can be easily derived
the same procedure. When the order of the tensor product is greater than the numt
vertices defining the fundamental shape, the expression is no longer unique. Some"
in the unified formulas can then be written in terms of others. We thus obtain simplif
formulas for the line segment starting with the third order, the triangle for the fourth orc
and the tetrahedron for the fifth order. For practical applications, expressions for ger
monomials in terms of Cartesian coordinates are also given. From these one can ¢
obtain the expression for any specific monomial.

Quadrature approximations to integrals ovenagimensional simplex, including trian-
gles and tetrahedra, which are symmetric with respect to the vertices, have received |
attention in recent years. A compilation of formulas is found in the book by Stround |
with references to the original papers given therein. Some additional formulas are fc
in Grundmann and Mller [2]. Formulas for triangles were also given by Cowper [3] an
Lyness and Jespersen [4], and for tetrahedra by Yu [5] and Keast [6]. Some of the deriva
of these formulas involved algebraic methods, based on roots of orthogonal polynom
and were often of an ad hoc nature. Using our coordinate-free formulations, we dev
very simple and rational procedures to derive all of the above formulas, and also s
useful ones that are new to our knowledge. The exact polynomial integrals are use
obtain quadrature approximations of various degrees of precision for arbitrary integ
over the fundamental domains. For isolated fundamental shapes, the most efficient fc
las, minimizing the number of quadrature points, are those in which the locations of
quadrature points are unspecified. By analogy with the one-dimensional cases, the forr
are referred as Gauss, even for triangles and tetrahedra. For the latter two shapes,
the nonlinearity of the equations, there may be more than one Gauss formula for a ¢
degree of precision, and some could possess properties not shared by the one-dimer
formulas. Quadrature points could be located outside or on the boundaries, and sor
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the coefficients or weights could be negative, which may be unsuitable in some applic
tions. Under some conditions, it may be desirable to employ formulas that involve one
more free parameters. While they are less efficient for isolated fundamental shapes,
parameters can be chosen so that all the weights are positive, if this is necessary. A m
important role for the free parameter(s) is to place some or all of the quadrature points
shape boundaries (vertices, edges, or faces). Such formulas are referred to as Lobatto, &
by analogy with the one-dimensional case. When the original finite domains are part
a grid consisting of arbitrary polyhedra or polygons, these boundary elements are sha
by several fundamental shapes. Depending on the type of the polyhedra or polygons,
degree of precision, the amount of storage available, and the parallelization of a code
Lobatto formula may be more efficient than a Gauss formula. We therefore present b
Gauss and Lobatto formulas of various degrees of precision. Note that besides the eva
tions of boundary terms and possible source terms, quadrature approximations are us
when calculating integrals over the conservation domain for those basis functions that :
not readily integrable. The type of term being evaluated will also play a role in choosin
between a Gauss or Lobatto formula.

II. EXACT INTEGRALS OF POLYNOMIALS FOR THE FUNDAMENTAL SHAPES

Letr denote the position vector of a point in space with respect to an arbitrary origir
Using tensor notation, an arbitrary functidiir) can be expanded about the origin in terms
of tensor products as a generalized Taylor series

f(r)=fO) +r-(VHo+3rm ((VVi)+inmr ((VVV )+ ---. (1)

In our procedure for obtaining a high-order accurate discretization of equations, steps
and (4) require the integration df(r) over the conservation domain and its boundaries, in
which the evaluations of the integrals of the tensor productsobfvarious orders over the
fundamental domains are required. bdte the number of vertices defining the fundamental
shape. The line segmemt & 2) is defined by the points andr,, and has the length

L=|I’2—l’1|. (23.)
Similarly, the triangleif = 3) is defined by the points,, r,, andrs, and has the area
S=3lrz—ry) x (r3—r2)l, (2b)
and the tetrahedrom (= 4) is defined by the points, r», r3, andr4, and has the volume
V=glrza—ry x (r3—ry) - (ra—r)l. (2)
In orderto derive the formulas for the integrals of the tensor products, instead of employil
the conventional simplex coordinates, it is simpler for our purposes to use the independ
parametric representations for the three fundamental shapes shown in Figs. 1a, 1b, anc

Here the parametets v, andw range from 0 to 1. A point on the line segment is given by

r=ri(1—u)—+rou, (3a)
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(a) line segment (b) triangle (c) tetrahedron

FIG. 1. Parameteric representations for three fundamental shapes.

whereu is the fractional distance from to r,. The differential elemerd L is

dL=

8—L du=Ldu. (3b)

A point on the triangular face is given by
r=ry(1—u)+ru(l—v)+rsuv, (4a)

whereuv is the fractional distance from to r3, andu is the fractional distance from to
thev-endpoint. The differential element is

s |2 2
av

dudv =2Sudud. (4b)
au

Similarly, a point in the tetrahedron is given by
r=ri(1—u)+rou(l—v)+rzuv(l—w) +rauvw, (5a)

wherew is the fractional distance fromg to r4, v is the fractional distance from, to
thew-endpoint, andi is the fractional distance from to thev-endpoint. The differential
elementis

ar ar ar

dV=|— x — - —
au

du dvdw = 6V u?v du dv dw. (5b)

avlaw

Using the above changes of variables, the spatial integrals can be transformed to inte
in the parameter space. The derivations can be simplified considerably by making u:
certain symmetries. For example, in evaluatifigr dV, since the final result must be
symmetric in the four vertices, the coefficientsrefir; andror,r, must be the same, etc.
Similarly, since products of powers of v, andw commute, it follows that the coefficients
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of ryrarp andrqror; must be the same, etc. As a result, the integrations only involve a fe
independent integrals in the parameter space. The formulas for the exact integrals of ter
products over the three fundamental domains can be expressed in a unified manner in te
of tensor products of the position vectors of the vertices. The final results up to the fif
order are

o - [ro —r1]
/1dS S = %|(|’2—r1)x(r3_rl)| (Ga)
dv V %|(r2—r1) X (f3—r1) - (fa—ry)l
dL 1 L
/rds i nzri(s) (6b)
dV i V
( ) (6¢)
dL L
/rrr 3\? - n(n+1)(n+2) Zi:ij:zk:rirjrk—i-zi:;(ririrj 400
L
+2) rinin (s) o
! Y%

dL
/rr ds =
dv n(n+1)

ZZF ri +Zr I

<

dL
/rrrr :\S/ = nn+ 1L+ 2)(n+3) Z;;anrkn
DB ICLUIIENDED SWCLHIE
T —~ L
+ZZZ(”” )+62rrrr, (s) (6€)
dL v

/rrrrr S\S/ - nn+1(n+2)(n+3)(n+4) Z]Z;Z;rirjrknrm
+ZZZZ(rifif1rkl‘|+-~-)+ZZZ(ririrjrjrk+...)
i ok i i K
+ZZZZ(riririrjrk+"')+ZZZ(riririrJrJ— +00)
ik P

L
( s) . (6f)
Y

Here the range for each summation is from f.tm Egs. (6d) to (6f), we have only indicated
one term in some of the summations, the others being obtained from the independ
permutations of the indices. For example, there are three terms in the second summatio
Eq. (6d), namely;;rirj, rirjri, andr;rir;. Similarly, there are six, three, and four terms in

+6) > (rinrinir; + )+24Zr-r-r-r-r-
(!
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the second to fourth summations in Eq. (6€), and 10, 15, 10, 10, and 5 terms in the secc
sixth summations in Eq. (6f), respectively. The above formulas can be simplified when
order of the tensor products is greater timaift can then be shown that the contribution o
all the summations involving an even number of indices is equal to that of the summat
involving an odd number of indices. Thus for the line segment ), Eq. (6d) can be
replaced by

2
/rrr szm izzgrir,-rkJrZinirm]L. (7a)

For the line segment(= 2) and the trianglen(= 3), Eq. (6e) can be replaced by

szjzk:(ririr,—rk+-~-) +6Zriririri]<;>.

(7b)

2
/"” ds”"nn+ D+ 2+ 3)

Finally, for all three shapes, Eq. (6f) can be replaced by

dL

2
/rrrrr 3\5/ T nn+ D +2(n+3)(n+4) Z;;Z;mjrkmm
+Zzz(riririr1rk+'”)+ZZZZ(riririrJrk+...)
i ]k ~ T

L
( S) . (7c)
\

In practical calculations, the position vector is usually expressed in terms of Carte
coordinates. Let

+24Zriri ririr;
i

<>=) () ®)
i
denote the sum over the vertices of the fundamental shape. For examplg, > =

X1Y1 + X2¥2 for a line segment. From Egs. (6) and (7), we can easily derive the followi
relations for the integrals of generic monomials in Cartesian coordinates:

cdL L
/de=7<x> S (%99)
dv "

\
dL 1 L
/Xde: [<x><y>4+<xy>]| S (9b)
qv nn+ 1) v
dL 1
/xyzg\s/ :m[<x><y><z>+<x><yz>

L
+<y><XZ>+<Z><Xy>+2<XyZ>]<S) (9¢)
\%
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1

2 _
/X y2dsS = T Dn 20+ 3

dv

[(<x>24+<X®>)<y><zZ>+<yz>)

+2<y>(<X><XZ>4 <X’z2>)

+2<zZ>(<X><Xy> 4+ <X’y >)+2<Xy><XZ>

L
+4<Xx><Xxyz> +6<x2yz>](8). (9d)

\Y

When the order of the monomial is greater tlmathe relations can be simplified, and one

obtains

/xyzdL:

/X2 L _
Y24s =

dL
/x3yz ds =
dv

dL
/xzyzz ds =
dv

2
nin+21n+2)
2
n(n+ 1)(n+ 2)(n + 3)

+2<X>(KY><XZ>4+ <Z><XYy>)

+6 < x%yz>] (;) (10b)

[<X><y><z> +2<xyz>]L (10a)

[<Xx>%<yz>+<XP><y><z>

2
nin+ 1L +2)(n+3)(n+4)

[<x>3<y><z>

+B6<X>(<XYy><XZ>4 <X><XyZ>+ <y ><X°Z>
+<z2><X?y>)+3(<x><x2><yz>

+<y><XP><XZ>+<Z><X2><Xy>)

L
+12<x®><y><z>+24<x3yz>]| S (10c)
\Y
2 2 2
[« X><y><zZ>

nin+ 1L +2)(n+3)(n+4)

+<Xl><y><z>42<X><y’><XxzZ>
+<y><XP><yz>+<zZ><Xy>2+ <X>2<Vyz>
+<y>2<X?2>)+A4(< X >< Xy><YyZ>

T+ <Y>S<XY><XZ>+ <X><Z>< xy2>
+<y><z2><Xy>)+8<X><y><Xyz>

L
+24 < x%y?z >] ( s) ) (10d)
Y,
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Expressions for integrals of other monomials in Cartesian coordinates may be obtaine
appropriate substitution into the above formulas and simplifying where possible.

Ill. HIGH-ORDER QUADRATURE APPROXIMATIONS
FOR THE FUNDAMENTAL SHAPES

Quadrature approximation for integrals of an arbitrary functioover the fundamental
domains are of the form

. dL L
/f(r)dS: > wgtao|| S| (11a)
dav q \%

wherer is a quadrature point and the coefficieny is the corresponding weight. The
to or less thaml. Here we consider only approximations which are symmetric with respe
to the vertices. The quadrature points then fall into symmetry groups, each of whic
associated with a single weight. (Our use of the term “symmetry group” should not
confused with its definition in group theory.) The quadrature approximation then takes
form

L

> we) (rg)] s|. (11b)
g q Vv

dL
f(r)dS =
dv

whererg is a quadrature point belonging to symmetry grauprhe symmetry is most
clearly evident when viewed from the centroid of each fundamental shape. We therefore
it useful to introduce a parameterization based on the centroid, rather than the convent
simplex coordinates, to classify the quadrature points.

Let r denote the position vector with respect to the centroid of the fundamental sh:
Therefore,

r=r—r° (12)

where
re= }Zr (13)
= i
defines the centroid. It is easy to show that

Y=o (14)

From the above equation, it follows that in evaluating the integrals of tensor produgts ¢
all summations in which any index appears once also vanish. For the line segment,
ry = —ry, we then obtain

/FdL:/WdL: /rrrrrdL:O. (15a)
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The remaining Egs. (6) and (7) in terms of centroid-based position vectors reduce to
_ds

oy =0 (15b)
dL L L
/st =—— 3T (s (15¢)
Y nn+1) i Vv
__ds 2 ___/s
/r”dv = n(n+1)(n+2)zi:r”‘r‘<v) (15d)
__dL 12 /L
/””ds - n(n+1)(n+2)(n+3)zi:ririr‘r‘(S> (15€)
. 1 o o
/rrrrdv = NNt D+ 20N 13 Zi:zj:(l'il'irjrj +---)+62i:riririri \%
(15f)
____ds 48 e S
/””rdv T N+ DN+ 2N+ )N+ H4 Ir‘r‘r‘ri'“<v)' (159)

Note that, in general, the integrals of the tensor productsugf to the fifth order are just
proportional to the sum over all vertices of the tensor products. dthe only exception is
for the integral of the fourth-order tensor product over the tetrahedron, where the additi
ofterms) ;> (ririr;rj + - --) (total of three terms) are necessary.

A. Symmetry Groups

The first symmetry group consists of the centndidits location is shown in Fig. 2a for
the triangle and Fig. 2b for the tetrahedron. The second symmetry group consistsiof ths
one-parameter vertex-based quadrature points

_ 1
Y = ar; <—15a51,a7é0>- (16)

a =1 corresponds to the vertex, whide=—1/(n — 1) is the opposite vertex, midpoint
of the opposite edge, and centroid of the opposite face for the line segment, triang

(a) triangle (b) tetrahedron

FIG. 2. Location of centroid.
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(a) triangle (b) tetrahedron

FIG. 3. Location of one-parameter vertex based points.

and tetrahedron, respectivety= 0 corresponds to the centroid, and therefore it must |
excluded from this group. Note that for the line segment), the parameter and —«
describe the same group. For the triangle, the three points are located on the three
shown in Fig. 3a. For the sake of clarity, we only show one of the four corresponding po
and lines for the tetrahedron in Fig. 3b. If we sum the contribution from all members of
vertex-based group, we obtain, from Eq. (1), the relation

Olz Ol3 .
Zf(r_?)znf(rc)—i—? :(VVf)chE (VVV)e+---. (17)

Zi:r_ir_i

SRR
i

The third symmetry group consists of thén — 1) two-parameter edge-based quadratur
points

Ml=yli+o0 ((#iy#8#0) (18)

for edgeij. To exclude points which are already in the first two groypands must not
equal zero, angl must not equall. Here we also assume thatands are not equal. (When
the two parameters are the same we defined a fourth group, to be discussed below.) F
line segment, the third group is not necessary, since the first two groups cover the com
domain. It is easy to show that the valueg/adinds in they — & plane are restricted to the
triangle determined by the points (0, 1), (1, 0), &d./(n — 2), —1/(n — 2)) in order for
the quadrature points to lie in the domain. Whe# § = 1 the quadrature points lie on the
edgei| . Note that for the trianglen(= 3) the group ¢, §) is also equivalent to the groups
(=68,y —8)and ¢ — v, —y). For the triangle, the six points, which are located within it
boundary, are shown in Fig. 4a. For the tetrahedron, we show one of the six pairs of p
determined by a single edge in Fig. 4b. They are located in the plane defined by that
and the midpoint of the opposite edge. If we substitute Eq. (18) into Eq. (1) (expan
about the centroid) and sum over all the edges, we obtain a series involving sums of te
products o ij‘s. These can be expressed in terms of sums of tensor produgta®f

Y=o (19a)

i jA
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(a) triangle (b) tetrahedron

A

FIG. 4. Location of two-parameter edge based points.

DT =0 480 — v +8)2]Zr i (19b)
i j#i
DD TR =GP+ 8% — (v +9) ]Zr rifi (19¢)
i j#A

[N+ 6% — (v + 8)* + 129232 fininit;  (n=3),

ij tij i i
NS ___
+2y28222( i (n=4),
(19d)
SON T = In(r° 4 6% — (v + 6)° + 12(%2 + y283)]ZFFFFF

i j#
(19e)

2276787575 _ [n()/4 + 84) - ()/ + 5)4]Zr_rr_r_l

In deriving the above equations, we made use of the same simplifications that were emplo!
to obtain Egs. (7). The fourth symmetry group is a degenerate case of the third symme
groupwhery = § = 8, and consists of the(n—1) /2 one-parameter edge-based quadrature
points

_ 1 1
i =B +1)) (J>I»—msﬁ§§,ﬁ;ﬁ0>. (20)

B= % corresponds to the midpoint of the ed@eThis group is not necessary for the triangle
(n = 3), since the vertex-based group already includes this case. We therefore show res
for the tetrahedronn(= 4) only. For this case the paramefand— g describe the same
group. One of the six points, located on the line connecting the midpoint of the given ed
with the midpoint of the opposite edge, is shown in Fig. 5. The relevant tensor produ
summations over the edges can then be expressed as

=0 (21a)

i j>i

DD M =267 fih (21b)

i
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FIG.5. Location of one-parameter edge based points.

S A o)

DD T = A D D AT ) —4Y ARTR | (21d)
I ] 1

ij>i

S ST =0 @)
i j>i

The conventional simplex coordinagte are defined by
r= Zﬂi ri, (22a)
i
where

Z’““ =1 (22b)

Itis easy to establish the relations between our centroidal parameterization and the co
tional simplex coordinates for the four symmetry groups as follows: For

re: Mi:% (foralli) (23)
r_f‘: Mi:w (24a)
n
1- L.
np=—— G#b (24b)
_i}]s: Mi:w (25a)
l1-y4+M-=121%6
MZ% (25b)
) . .
=" k#ik# ) (25¢)
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1+(n—-2)8

- (26a)

f_ﬁi Mi =pj=

1-28
n

P = (k#i,k#J). (26b)

The results contained in Egs. (15), (17), (19), and (21) can be summarized in Table
It shows coefficients multiplying the various tensor product summations for each of tf
symmetry groups, as well as the integral bfr) over the fundamental domains. Note
that forn=2 or 3, the columm_; >=, (ririrjrj + ---) is not applicable, but six times
the coefficients in that column must be added to the coefficients in copupmr;r;r;. All
symmetric quadrature formulas of any degree of precision up to five can be derived from tl
table. The number of independent terms (columns) required for a given degree of precis
depends on the fundamental shape. For the line element, the degree of prea$idre
guadrature approximation equals one plus two times the number of independent terms.
the other two shapes, an approximation of degree of precistmasd independent terms,
except for the tetrahedron, where we have 1 terms ifd > 4.

In a Gauss quadrature formula, the parameters defining a symmetry group are unspeci
Then the number of unknowns associated with a group is one (the weight) plus the numi
of parameters defining the group. The number of quadrature points belonging to a symme
group is a function of the fundamental shape. The efficiency of a particular symmetry gro
in forming a Gauss quadrature approximation is measured by the number of quadrat
points per unknown. These are tabulated for the four symmetry groups and three fundame
shapes in Table 2. For the line element, the two symmetry groups are equally efficient, |
for the other two shapes the efficiency is a function of the symmetry group, with the centro
being the most efficient and the two-parameter edged-based group being the least effici
The latter group is not required to derive the most efficient Gauss quadrature formul
when the degree of precision is no greater than five. But that group is important in obtainil
efficient Lobatto formulas, as will be shown below. Using Tables 1 and 2 we can deri
Gauss quadrature formulas for the three fundamental shapes by equating the total nun
of unknowns to the number of independent terms. There may be more than one combinat
of symmetry groups satisfying this condition. The combination giving the most efficien
formula will be referred to as the Gauss quadrature formula. Since the parameters oc
nonlinearly ford > 2, there may be more than one solution for a particular combination o
symmetry groups. This will be found to be true for one case even after discarding solutio
that locate quadrature points outside the domains. For the triangle and tetrahedron,
formulas may contain negative weight coefficients.

While the Gauss quadrature formulas are the most efficient for isolated fundamen
shapes, they may not be appropriate if positive weight coefficients are desired or if t
shapes are part of a grid in which their boundaries (vertices, edges, or faces) are share
several neighbors. In these cases it may be more efficient to employ limiting forms of
symmetry groups in which the points lie on the boundary elements. Quadrature formul
using these special symmetry groups will be referred to as Lobatto. These new symme
groups consist of the verticeg, edge midpointsf; , face centroidsr;_if , and one-parameter
edge points_fj . They are defined as

1
-

¢ witha =1; 27)

=
e B
3

v witha = —%, vertexk opposite edgéj, for triangle (28a)

r; with 8 = 1, for tetrahedron (28b)
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TABLE 2
Number of Unknowns and Gauss Quadrature Points for Symmetry Groups

Line element Triangle Tetrahedron

Symmetry  Number of Numberof Pointsper Numberof Pointsper Numberof Points per

group unknowns points unknown points unknown points unknown

re 1 1 1 1 1 1 1

re 2 2 1 3 15 4 2

e 3 6 2 12 4

r_i’j’ 2 6 3
r_if =r¥ witha = —%, vertexi opposite facef, for tetrahedron (29)
— =8 .
rij=r; wthy=e€dé=1-¢. (30)

In order to determine the relative efficiency of these new symmetry groups, we need t
relations among the fundamental elements (vertices, edges, faces, and cells) which m
up an arbitrary polygon or polyhedron. For a polygonal face (or plane polygon in twi
dimensions), which can always be triangulated without introducing interior vertices, w
define

v = humber of vertices, (31a)
e = total number of edges, (31b)
e, = number of boundary edges (31¢c)

f = total number of triangular facets or faces. (31d)

These satisfy the relations

V=6, (32a)
e=2e —3, (32b)
f=g—2 (32¢c)

For polyhedra, we restrict ourselves to triangulated polyhedra that can be subdivided ir
tetrahedra without introducing interior vertices. This is true for convex polyhedra. Th
subdivision may require introducing interior edges. For this case, in addition to the elemel
defined in Eqgs. (31), we also define

e = number of interior edges, (33a)
f, = number of boundary triangular faces, (33b)
¢ = number of tetrahedra. (33c)

The elements defined by Egs. (31) and (33) satisfy the following relations for a triangulat
polyhedron:
f
v = ?"’ 12 (34a)

e=c+ fp+1, (34b)
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3
= —fp, 34
5 (34c)
6 =e—g, (34d)
f =2c+%. (34e)

The efficiency of the new symmetry groups in a Lobatto quadrature approximatiol
also a function of the type of integral being approximated. There are three such integre
a conservation law. If the basis functions are not readily integrable, a quadrature ove
conservation domain is required in step 3 of the general discretization procedure. Sinc
same basis functions are utilized for all the cells in the grids, we consider integratiol
arbitrary functions over all the tetrahedra (or triangles) contained in the tetrahedralize«
triangulated) grid. Neglecting the effects of grid boundaries and assuming a homogen
grid, we obtain for domain integrals in two dimensions the relations

v = %f, (35a)

e= g f. (35b)
In three dimensions, one obtains analogously the relations

v = iC, (36a)

e={c (36b)

f =2c. (36¢)

The second type of integral is a source integral. This involves integrating an arbit
nonlinear function over a polyhedral (or polygonal) cell. The relations among the geome
elements are given by Eqs. (32) and (34). The third type of integral is a boundary inte
For each function evaluation at a boundary point, several additional projections ontc
boundary normals or tangents may be required. We assume that the computationa
of these projections can be neglected, compared to the computational cost of the fun
evaluation. For two-dimensional problems the boundaries are line segments, and the (
formula is to be preferred. For three-dimensional problems, the required relations fol
boundary of a triangulated polyhedra are given by Eqgs. (34b) and (34c). The data for
boundary symmetry group obtained from Egs. (32), (34), (35), and (36) is tabulated for
three types of Lobatto integrals in Table 3. For completeness, we have also repeate
information for the group® andr?®. All Lobatto formulas can be obtained using Tables 1 an
3, where entries in Table 1 are replaced by their limiting values as indicated in Egs. (2°
(30). For a given degree of precision, there are now many more combinations of symn
groups to evaluate as possible candidates. Again, we may find several or no solution
will discard those with quadrature points outside the domains.

The last columnin Table 3 deserves further comments. For a given polyhedron, incree
the number of interior edges increases the total number of tetrahedral cells, faces, and ¢
but the total number of vertices remains the same. Therefore, the net result is to increa:
total number of quadrature points for every symmetry group except the grovhenever
possible, one should triangulate polygonal faces and subdivide the triangulated polyhe
in such a way as to minimize the number of interior edges, which also minimizes the nun
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TABLE 3
Number of Unknowns and Lobatto Quadrature Points for Symmetry Groups

No. of points
No. of points per triangle per tetrahedron
Symmetry  Number of
group unknowns Domain Source Boundary  Domain Source
re 1 1 1 1 1 1
re 2 3 3 3 4 4
A 1 S R T BT
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oftetrahedral cells. We illustrate this point with some simple examples. Atetragonal pyram
with a planar base, which has five vertices, can only be subdivided into two tetrahedra w
no interior edge. But a trigonal bipyramid, which also has five vertices, can be subdivide
into two tetrahedra with no interior edge (Fig. 6a), or three tetrahedra with one interior ed
(Fig. 6b). The former subdivision is to be preferred, since it results in fewer total numbe
of quadrature points. There are two important shapes with six vertices. An octahedron c
only be subdivided into four tetrahedra with one interior edge. The subdivision of a trigon:
prism depends on the triangulation of the quadrilateral faces, which can be nonplan
A subdivision into three tetrahedra with no interior edge is shown in Fig.7a. Of the tw
possible triangulations of a nonplanar quadrilateral face, one produces an exterior ed
while the other one defines an interior edge. Thus a prism with a nonplanar face can
subdivided into four tetrahedra with one interior edge, as shown in Fig. 7b. Itis easy to pro
that an arbitrary trigonal prismatic grid can always be triangulated so as to result in thr
tetrahedra per prism with no interior edge. Another example is a structured grid consisti
of hexahedra with quadrilateral faces. As shown by Rizzi [7], there exists a triangulatic
of the faces which permits subdivision into five tetrahedra with no interior edge (Fig. 8a
One of the five is twice the size of the other four. Kordulla and Vinokur [8] recommended

(a) (b)

FIG. 6. Two possible subdivisions of a trigonal bipyramid.
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(a) (b)

FIG. 7. Two possible subdivisions of a trigonal prism.

subdivision into six tetrahedra, by introducing a main diagonal as a common interior €
(Fig. 8b). Although the latter produces a more uniform subdivision, the former is prefert
In summary, polyhedra consisting of less than four tetrahedra will not require an inte
edge, while those with four or more may require one.

B. Quadrature Formulas

With the aid of Tables 1-3, we can derive virtually all symmetric quadrature formu
of any degree of precision up to five. By choosing different combinations of symme
groups one might end up with more unknowns than the number of equations required
solved. The resulting system of equations thus becomes underdetermined, and the sol
can then be expressed in terms of free parameters. We can show that many publishe
mulas are just solutions with particular choices of the free parameters. We have tabu
some Gauss and Lobatto formulas that are useful for approximating the different type
integrals for arbitrary polyhedral and polygonal grids. Only those formulas for which 1
quadrature points lie within the domains are given. The formulas for the line element
classical, and therefore are not presented. The coefficients for triangles and tetrahed
givenin Tables 4 and 5, respectively. Although they can all be expressed in closed form
to space limitations, one of the relations is given in the text below. The tetéders to Gauss

(a) (b)

FIG. 8. Two possible subdivisions of a hexahedron.
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formulas, while the other letters indicate Lobatto formulas. Those formulas not found |
references cited in this paper are starred. Note that negative weights are present in form
(3g) and (4c) for triangles, and (39), (49), (4b), (4c), and (5a) for tetrahedra.

We now give brief derivations of some the formulas, concentrating on those combinatio
of symmetry groups resulting in the solution of quadratic or cubic algebraic equations. /
can be seen from Tables 2 and 3, the edge-based symmetry ﬂﬁ@mr_ﬁ , and their
limiting forms are less efficient than the centrofdand vertex-based symmetry grotfp
and its limiting form. None of the edge-based groups or their limiting forms are require
until we reachd > 4. We note from Table 1 that if the centraiflis present, the weight
we appears only in the first column. The system is thus simplified, having been reduc
by one equation and one unknown. A unique solution is then readily obtained for all tt
cases we tabulated except tbe 5, where two formulas require the solution of a quadratic
equation.

It follows from Table 1 that fod < 3 the triangle and tetrahedron may be treated in a
unified manner. From Table 2 we see thatapoint Gauss formula fod = 2 is given by
the symmetry group{. From the first two columns of Table 1 we obtain immediately

1 1

d=2: w, = o a—:i:m.
For the tetrahedronn(=4) the negative root must be discarded, siaces outside the
permitted range (see Eg. (16)). For the triangle=(3) both roots are valid, but the negative
root (@ = —%) places the points on the mid-edge of the triangle. This is an example of
Gauss formula with points located on the boundary. It will therefore be more efficient whe
the triangle is part of a triangular or polygonal grids and is to be preferred to the positi
root. From Table 3 we see that it is also superior to the Lobatto formula basedamal
r? for the source and boundary integrals, but equally as efficient for the domain integr:
Using Tables 1 and 2, we readily derive the solution forrthie 1 point Gauss formula for
d =3, based om® andr?, as

37)

n? (N + 2)2 2
d=3 we=—"————, Wy=——"-"-—, a= .
in(n+ 1) n+2

nn+1)° (38)

Note that the centroid has a negative weight for both shapes. The Lobatto formula basec
r? andrf involves the solution of a quadratic equation. The final expressions are

1A 9
T 2nn+H(n+2)’

22 +6n+3+/4n+9 1+/4n+9
Wy = = .
2n(n+1)(n + 2) 2(n+2)

d=3: w,
(39)

)

The two roots for are within the permitted range for both shapes, but only the lower sigr
gives all positive weights. For the tetrahedron, there is an additional reason for choosi
the lower sign, since we have= —3, so that the formula is actually based orandr;’,
and all the points lie on the boundary. On the other hand, one can show from Table 3
for the triangle the Lobatto formula basedinr?, andr_ﬁ is more efficient than Eq. (39)
for the domain and boundary integrals.

Whend > 4, it follows from column 5 in Table 1 that the formula for a tetrahedron requires

the symmetry groups?fgj or FI’]‘S or their limiting forms. The use of the two-parameter
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edge-based group is in general less efficient than using the combination of one-paral
edge-based and vertex-based groups. When emplﬁf(i,rtgwe can derive from Table 1 the
relation

wsB* = g (40)

One immediately obtaing. = ﬁ; for Lobatto formulas involving the edge midpoint sym-
metry grouprf;. For these cases, the solutions for tetrahedra have the same structu
those for the corresponding triangles.

All the quadrature formulas except two fdr> 4 that we have tabulated include two
vertex-based symmetry group%', andrj?, or their limiting forms. Here we present a
general method for obtaining solutions, although many Lobatto formulas can be determ
by simpler procedures. The equations to be solved are some or all of the set

We, + Wa, = 9 (41a)
We, @2 4 W03 = @ (41b)
We, X5 4 W05 = a3 (41c)
wa,loti1 + wazocg =a4 (41d)
We, @3 + W05 = 8s. (41e)

The parameterg could include unknowns from other symmetry groups. From Eqgs. (41
and (41c) we obtain fow,, andw,, the expressions

oy — a3 ) — ag
Wy = —5—————, Wy = —5 . (42)
ai(os —o1) as(og — o)

Substituting the above equations into Egs. (41a), (41d), and (41e) we obtain

ag(or + ) — (a1 + @2)? — 1a)] = ag(errr2)? (43a)
agay + a2) — @y = &y (43b)
ag[(otl + 0[2)2 — Ollotz] — apaias(oy + ap) = as. (430)

Ford = 4, we can eliminated(; + «») by substituting Eq. (43b) into Eq. (43a), and obtair
for aya5 the quadratic equation

(a3 — a0ad) (1a2)® + 23 (8pau — 85) o2 + &y oy — a3) = 0. (44)

If there are no additional unknowns from other symmetry groups and for the valiags o
to a4 in our tabulated cases, Eq. (44) has two real solutions. For each of them, Eq. (
then yields a quadratic equation whose solutionsxar@nda,. In our cases the constants
are such that one of the solutions of Eq. (44) results in locatingramgside the permitted
range. Fod = 5, it follows from Eqs. (43b) and (43c) that andw, are two solutions of
the quadratic equation

(apay — ad) o + (agas — as)a + (agas — aj) = 0. (45)
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As an example, we present the Gaussian solution for the tetrahedron for the degree
precision five. The most efficient quadrature points for this case involve two vertex-bas
r* and one edge-baséﬁ symmetry groups. (The Gauss formula given in Ref. [5] is less
efficient than the present one.) We must now include Eq. (40) in our equation set (41).
terms of

1
the parameters, become
12 N
T4 560 2720 420
1 1 1 (47)
a3 6_0? a4 —_ @9 a5 rm'

Substituting ¢1 + «2) andaias from Eq. (45) into Eq. (43a), one obtains a cubic equation
for A

9,3 — 284\2 + 2800, — 8512= 0. (48)

The above equation has three real roots. The valuesaride, from one root are complex,
while those from another root place one set of points outside the tetrahedron. The remain
root is given

1 67479
_4 [4@ cos<W> + 71] . (49)
27 3
This value must be used in evaluating formula (5g) in Table 5. Note that this formula we
derived in Ref. [2] by an entirely different procedure, but only numerical values of the
parameters were given. We have provided explicit exact relations for the parameters.
For a given degree of precisionthe optimum quadrature formulas to use (in terms of the
minimum number of quadrature points) depend on the type of integral being approximate
and whether negative weights are allowed. For each valwt oking Tables 1-3, we
have examined all possible candidate combinations of symmetry groups to determine
optimum one. The results are summarized in Table 6. Intlm®lumn, “pos” means that
positive weights are necessary, while “neg” means that negative weights are allowed. |
triangles, the formulas for the domain integrals were previously given in Ref. [4]. One fine
note concerns the domain integral for a tetrahedron. For a nonuniform grid obtained
subdividing the hexahedron of a structured grid into five tetrahedra, the entries in Table
for the groups?, rfj, andrf; would bes, £ and , respectively. This does not affect the
choice of optimum formulas in Table 6.

IV. CONCLUDING REMARKS

We have presented formulas for exact integrals of polynomials and quadrature appro
mations up to degree five for the line segment, triangle, and tetrahedron. These three sh:
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TABLE 6
Optimum Quadrature Formulas for Various Types of Integrals

Triangle Tetrahedron
d w Domain  Source  Boundary w Domain Source
1 Pos. or neg. a 19 lg(c=1) Pos.orneg. a 19
la(c>1)
2 Pos. or neg. @or 2a 29 29 Pos. or neg. 2 2g(c=1)
2a(c>1
3 Pos. ® 3a 3b Pos. a 3a
Neg. K1) 39 3b Neg. k-1 3g(c<4)?
3a(c > 4)*
4 Pos. b 49 4a(c=1 Pos. 4 4a
4 (c> 1
Neg. o 49 4c Neg. o 49 (c < 4)
4b(c> 4
Pos. B 59 (c < 4)
5b(c > 4
5 Pos. or neg. & 59 5a Neg. ) 5g(c=1)
ba(c>1)
3g.ifg =0,

2 Whenc = 4, )
{ 3a, otherwise

are the building blocks for integrations over arbitrary polyhedral or polygonal grids. Ata
of coefficients for quadrature symmetry groups and integrals for all three shapes is g
enabling one to construct symmetric quadrature formulas in a rational manner. The
procedure for obtaining the solutions in higher dimensions is no more complex than the
we are familiar with for one dimension. We have tabulated many useful Gauss and Lok
formulas for both the triangle and tetrahedron, including a number that have not appear
references available to us. All the formulas derived in this paper provide necessary toc
the spatial discretization of finite-volume equations over arbitrary polyhedral or polygo
grids to an accuracy of up to the fifth order. Higher-order formulas can be readily obtai
using our procedure. Some of the quadrature formulas will now require the introduc
of the two-parameter edge-based symmetry group defined by Eq. (18). As a result
coefficients will not always be expressible in closed form, but may require the numer
solution of non-linear algebraic equations.
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